Form factors of theXXZmodel and the affine quantum group symmetry
نویسندگان
چکیده
منابع مشابه
Understanding the ^-Factors in Quantum Group Symmetry *
für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namen...
متن کاملExact S-matrices with Affine Quantum Group Symmetry
We show how to construct the exact factorized S-matrices of 1+1 dimensional quantum field theories whose symmetry charges generate a quantum affine algebra. Quantum affine Toda theories are examples of such theories. We take into account that the Lorentz spins of the symmetry charges determine the gradation of the quantum affine algebras. This gives the S-matrices a non-rigid pole structure. It...
متن کاملQuantum Group and Quantum Symmetry
This is a self-contained review on the theory of quantum group and its applications to modern physics. A brief introduction is given to the Yang-Baxter equation in integrable quantum field theory and lattice statistical physics. The quantum group is primarily introduced as a systematic method for solving the Yang-Baxter equation. Quantum group theory is presented within the framework of quantum...
متن کاملQuantum group symmetry in sine-Gordon and affine Toda field theories on the half-line
We consider the sine-Gordon and affine Toda field theories on the half-line with classically integrable boundary conditions, and show that in the quantum theory a remnant survives of the bulk quantized affine algebra symmetry generated by nonlocal charges. The paper also develops a general framework for obtaining solutions of the reflection equation by solving an intertwining property for repre...
متن کاملQuantum Affine Symmetry as Generalized Supersymmetry
The quantum affine Uq(ŝl(2)) symmetry is studied when q is an even root of unity. The structure of this algebra allows a natural generalization of N = 2 supersymmetry algebra. In particular it is found that the momentum operators P, P , and thus the Hamiltonian, can be written as generalized multi-commutators, and can be viewed as new central elements of the algebra Uq(ŝl(2)). We show that mass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 1998
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/31/7/013